The uniform Roe algebra of an inverse semigroup

نویسندگان

چکیده

Given a discrete and countable inverse semigroup $S$ one can study, in analogy to the group case, its geometric aspects. In particular, we equip with natural metric, given by path metric disjoint union of Sch\"{u}tzenberger graphs. This graph, which denote $\Lambda_S$, inherits much structure $S$. this article compare C*-algebra $\mathcal{R}_S$, generated left regular representation on $\ell^2(S)$ $\ell^\infty(S)$, uniform Roe algebra over space, namely $C^*_u(\Lambda_S)$. yields chacterization when $\mathcal{R}_S = C^*_u(\Lambda_S)$, generalizes finite generation We have termed labeability (FL), since it holds $\Lambda_S$ be labeled finitary manner. The graph FL condition above, also allow analyze large scale properties relate them C*-properties algebra. show that domain measurability (a notion generalizing Day's definition amenability semigroup, cf., [5]) is quasi-isometric invariant $\Lambda_S$. Moreover, characterize property A (or components) terms nuclearity exactness corresponding C*-algebras. treat special classes F-inverse E-unitary semigroups from point view.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Invariant Uniform Roe Algebra as Crossed Product

The uniform Roe C U G . The reduced C algebra C G is naturally contained in CU G . We show that the elements of l∞ which are invariant under are of the form l∞ . Finally we show that if and are bounded geometry discrete metric spaces, then

متن کامل

SPECTRUM OF THE FOURIER-STIELTJES ALGEBRA OF A SEMIGROUP

For a unital foundation topological *-semigroup S whose representations separate points of S, we show that the spectrum of the Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup. We also calculate B(S) for several examples of S.

متن کامل

Arens regularity of inverse semigroup algebras‎

‎We present a characterization of Arens regular semigroup algebras‎ ‎$ell^1(S)$‎, ‎for a large class of semigroups‎. ‎Mainly‎, ‎we show that‎ ‎if the set of idempotents of an inverse semigroup $S$ is finite‎, ‎then $ell^1(S)$ is Arens regular if and only if $S$ is finite‎.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

Fiat categorification of the symmetric inverse semigroup and the semigroup

Starting from the symmetric group Sn , we construct two fiat 2-categories. One of them can be viewed as the fiat “extension” of the natural 2-category associated with the symmetric inverse semigroup (considered as an ordered semigroup with respect to the natural order). This 2-category provides a fiat categorification for the integral semigroup algebra of the symmetric inverse semigroup. The ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.124996